Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metabolic profiling of the methylerythritol phosphate pathway reveals the source of post-illumination isoprene burst from leaves.

Identifieur interne : 002594 ( Main/Exploration ); précédent : 002593; suivant : 002595

Metabolic profiling of the methylerythritol phosphate pathway reveals the source of post-illumination isoprene burst from leaves.

Auteurs : Ziru Li [États-Unis] ; Thomas D. Sharkey

Source :

RBID : pubmed:22831282

Descripteurs français

English descriptors

Abstract

The methylerythritol phosphate (MEP) pathway in plants produces the prenyl precursors for all plastidic isoprenoids, including carotenoids and quinones. The MEP pathway is also responsible for synthesis of approximately 600 Tg of isoprene per year, the largest non-methane hydrocarbon flux into the atmosphere. There have been few studies of the regulation of the MEP pathway in plants under physiological conditions. In this study, we combined gas exchange techniques and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) and measured the profile of MEP pathway metabolites under different conditions. We report that in the MEP pathway, metabolites immediately preceding steps requiring reducing power were in high concentration. Inhibition of the MEP pathway by fosmidomycin caused deoxyxylulose phosphate accumulation in leaves as expected. Evidence is presented that accumulation of MEP pathway intermediates, primarily methylerythritol cyclodiphosphate, is responsible for the post-illumination isoprene burst phenomenon. Pools of intermediate metabolites stayed at approximately the same level 10 min after light was turned off, but declined eventually under prolonged darkness. In contrast, a strong inhibition of the second-to-last step of the MEP pathway caused suppression of isoprene emission in pure N(2). Our study suggests that reducing equivalents may be a key regulator of the MEP pathway and therefore isoprene emission from leaves.

DOI: 10.1111/j.1365-3040.2012.02584.x
PubMed: 22831282


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolic profiling of the methylerythritol phosphate pathway reveals the source of post-illumination isoprene burst from leaves.</title>
<author>
<name sortKey="Li, Ziru" sort="Li, Ziru" uniqKey="Li Z" first="Ziru" last="Li">Ziru Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sharkey, Thomas D" sort="Sharkey, Thomas D" uniqKey="Sharkey T" first="Thomas D" last="Sharkey">Thomas D. Sharkey</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:22831282</idno>
<idno type="pmid">22831282</idno>
<idno type="doi">10.1111/j.1365-3040.2012.02584.x</idno>
<idno type="wicri:Area/Main/Corpus">002955</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002955</idno>
<idno type="wicri:Area/Main/Curation">002955</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002955</idno>
<idno type="wicri:Area/Main/Exploration">002955</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metabolic profiling of the methylerythritol phosphate pathway reveals the source of post-illumination isoprene burst from leaves.</title>
<author>
<name sortKey="Li, Ziru" sort="Li, Ziru" uniqKey="Li Z" first="Ziru" last="Li">Ziru Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sharkey, Thomas D" sort="Sharkey, Thomas D" uniqKey="Sharkey T" first="Thomas D" last="Sharkey">Thomas D. Sharkey</name>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acclimatization (drug effects)</term>
<term>Acclimatization (radiation effects)</term>
<term>Butadienes (metabolism)</term>
<term>Chromatography, High Pressure Liquid (MeSH)</term>
<term>Darkness (MeSH)</term>
<term>Erythritol (analogs & derivatives)</term>
<term>Erythritol (chemistry)</term>
<term>Erythritol (metabolism)</term>
<term>Fosfomycin (analogs & derivatives)</term>
<term>Fosfomycin (pharmacology)</term>
<term>Hemiterpenes (metabolism)</term>
<term>Light (MeSH)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Metabolic Networks and Pathways (drug effects)</term>
<term>Metabolic Networks and Pathways (radiation effects)</term>
<term>Metabolome (drug effects)</term>
<term>Metabolome (radiation effects)</term>
<term>Nitrogen (pharmacology)</term>
<term>Pentanes (metabolism)</term>
<term>Plant Extracts (MeSH)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (radiation effects)</term>
<term>Populus (metabolism)</term>
<term>Populus (radiation effects)</term>
<term>Reference Standards (MeSH)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acclimatation (effets des médicaments et des substances chimiques)</term>
<term>Acclimatation (effets des radiations)</term>
<term>Azote (pharmacologie)</term>
<term>Butadiènes (métabolisme)</term>
<term>Chromatographie en phase liquide à haute performance (MeSH)</term>
<term>Extraits de plantes (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (effets des radiations)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Fosfomycine (analogues et dérivés)</term>
<term>Fosfomycine (pharmacologie)</term>
<term>Hémiterpènes (métabolisme)</term>
<term>Lumière (MeSH)</term>
<term>Métabolome (effets des médicaments et des substances chimiques)</term>
<term>Métabolome (effets des radiations)</term>
<term>Normes de référence (MeSH)</term>
<term>Obscurité (MeSH)</term>
<term>Pentanes (métabolisme)</term>
<term>Populus (effets des radiations)</term>
<term>Populus (métabolisme)</term>
<term>Spectrométrie de masse (MeSH)</term>
<term>Voies et réseaux métaboliques (effets des médicaments et des substances chimiques)</term>
<term>Voies et réseaux métaboliques (effets des radiations)</term>
<term>Érythritol (analogues et dérivés)</term>
<term>Érythritol (composition chimique)</term>
<term>Érythritol (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Erythritol</term>
<term>Fosfomycin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Erythritol</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Butadienes</term>
<term>Erythritol</term>
<term>Hemiterpenes</term>
<term>Pentanes</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Fosfomycine</term>
<term>Érythritol</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Érythritol</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Acclimatization</term>
<term>Metabolic Networks and Pathways</term>
<term>Metabolome</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Acclimatation</term>
<term>Feuilles de plante</term>
<term>Métabolome</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Acclimatation</term>
<term>Feuilles de plante</term>
<term>Métabolome</term>
<term>Populus</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Butadiènes</term>
<term>Feuilles de plante</term>
<term>Hémiterpènes</term>
<term>Pentanes</term>
<term>Populus</term>
<term>Érythritol</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Azote</term>
<term>Fosfomycine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Fosfomycin</term>
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Acclimatization</term>
<term>Metabolic Networks and Pathways</term>
<term>Metabolome</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography, High Pressure Liquid</term>
<term>Darkness</term>
<term>Light</term>
<term>Mass Spectrometry</term>
<term>Plant Extracts</term>
<term>Reference Standards</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chromatographie en phase liquide à haute performance</term>
<term>Extraits de plantes</term>
<term>Facteurs temps</term>
<term>Lumière</term>
<term>Normes de référence</term>
<term>Obscurité</term>
<term>Spectrométrie de masse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The methylerythritol phosphate (MEP) pathway in plants produces the prenyl precursors for all plastidic isoprenoids, including carotenoids and quinones. The MEP pathway is also responsible for synthesis of approximately 600 Tg of isoprene per year, the largest non-methane hydrocarbon flux into the atmosphere. There have been few studies of the regulation of the MEP pathway in plants under physiological conditions. In this study, we combined gas exchange techniques and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) and measured the profile of MEP pathway metabolites under different conditions. We report that in the MEP pathway, metabolites immediately preceding steps requiring reducing power were in high concentration. Inhibition of the MEP pathway by fosmidomycin caused deoxyxylulose phosphate accumulation in leaves as expected. Evidence is presented that accumulation of MEP pathway intermediates, primarily methylerythritol cyclodiphosphate, is responsible for the post-illumination isoprene burst phenomenon. Pools of intermediate metabolites stayed at approximately the same level 10 min after light was turned off, but declined eventually under prolonged darkness. In contrast, a strong inhibition of the second-to-last step of the MEP pathway caused suppression of isoprene emission in pure N(2). Our study suggests that reducing equivalents may be a key regulator of the MEP pathway and therefore isoprene emission from leaves.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22831282</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>36</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2013</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Metabolic profiling of the methylerythritol phosphate pathway reveals the source of post-illumination isoprene burst from leaves.</ArticleTitle>
<Pagination>
<MedlinePgn>429-37</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1365-3040.2012.02584.x</ELocationID>
<Abstract>
<AbstractText>The methylerythritol phosphate (MEP) pathway in plants produces the prenyl precursors for all plastidic isoprenoids, including carotenoids and quinones. The MEP pathway is also responsible for synthesis of approximately 600 Tg of isoprene per year, the largest non-methane hydrocarbon flux into the atmosphere. There have been few studies of the regulation of the MEP pathway in plants under physiological conditions. In this study, we combined gas exchange techniques and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) and measured the profile of MEP pathway metabolites under different conditions. We report that in the MEP pathway, metabolites immediately preceding steps requiring reducing power were in high concentration. Inhibition of the MEP pathway by fosmidomycin caused deoxyxylulose phosphate accumulation in leaves as expected. Evidence is presented that accumulation of MEP pathway intermediates, primarily methylerythritol cyclodiphosphate, is responsible for the post-illumination isoprene burst phenomenon. Pools of intermediate metabolites stayed at approximately the same level 10 min after light was turned off, but declined eventually under prolonged darkness. In contrast, a strong inhibition of the second-to-last step of the MEP pathway caused suppression of isoprene emission in pure N(2). Our study suggests that reducing equivalents may be a key regulator of the MEP pathway and therefore isoprene emission from leaves.</AbstractText>
<CopyrightInformation>© 2012 Blackwell Publishing Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Ziru</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sharkey</LastName>
<ForeName>Thomas D</ForeName>
<Initials>TD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>08</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010420">Pentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010936">Plant Extracts</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C443879">methyl-D-erythritol 2,4-cyclodiphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2N81MY12TE</RegistryNumber>
<NameOfSubstance UI="D005578">Fosfomycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>5829E3D9I9</RegistryNumber>
<NameOfSubstance UI="C024640">fosmidomycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RA96B954X6</RegistryNumber>
<NameOfSubstance UI="D004896">Erythritol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000064" MajorTopicYN="N">Acclimatization</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002851" MajorTopicYN="N">Chromatography, High Pressure Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003624" MajorTopicYN="N">Darkness</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004896" MajorTopicYN="N">Erythritol</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005578" MajorTopicYN="N">Fosfomycin</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="Y">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="Y">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055442" MajorTopicYN="Y">Metabolome</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010420" MajorTopicYN="N">Pentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010936" MajorTopicYN="N">Plant Extracts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012015" MajorTopicYN="N">Reference Standards</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22831282</ArticleId>
<ArticleId IdType="doi">10.1111/j.1365-3040.2012.02584.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
<settlement>
<li>East Lansing</li>
</settlement>
<orgName>
<li>Université d'État du Michigan</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Sharkey, Thomas D" sort="Sharkey, Thomas D" uniqKey="Sharkey T" first="Thomas D" last="Sharkey">Thomas D. Sharkey</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Li, Ziru" sort="Li, Ziru" uniqKey="Li Z" first="Ziru" last="Li">Ziru Li</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002594 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002594 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22831282
   |texte=   Metabolic profiling of the methylerythritol phosphate pathway reveals the source of post-illumination isoprene burst from leaves.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22831282" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020